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Scheme I 
CH 2 =CHCOOH 

A Simple, Stereoselective, Highly Versatile 
Synthesis of Dichlorovinylcyclopropanecarboxylic 
Acids via 2-Chlorocyclobutanones1 

Sir: 

Recent years have seen a rapid growth in the synthetic work 
on pyrethroids, a class of compounds structurally related to the 
naturally occurring chrysanthemates.2 Pyrethroids in general 
possess high insecticidal activity3 while showing low mam
malian toxicity.4 Among modern pyrethroids, the ester of 
halovinylcyclopropanecarboxylic acids were found to be the 
most promising insecticides owing to their extraordinarily high 
potency and considerably increased photostability compared 
with those of the esters of chrysanthemic acid.3 Consequently, 
there have been numerous synthetic approaches to the most 
important precursor, 2,2-dimethyl-3-(2',2'-dichlorovinyl)-
cyclopropane-1-carboxylic acid (7).5,6 

All synthetic strategies to 7 published to date suffer from 
some serious disadvantages, e.g., a large number of synthetic 
steps, dangerous reagents or uneconomic processes. We now 
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report a short, conceptually unprecedented synthesis of 7. We 
believe that the underlying reactions may also have synthetic 
implications outside the pyrethroid field. 

The copper(l)-catalyzed addition of CCI4 to acrylic acid 
(0.05 molar equiv OfCu2Cl2, CH3CN, 140 0C, 4.5 h) followed 
by treatment of the tetrachlorobutanoic acid (1) thus formed 
with thionyl chloride gave the acid chloride 2 in 76% yield (bp 
79 0C(Il mm))7 (Scheme I). The key 2-chlorocyclobutanone 
48 was formed by the [2 + 2] cycloaddition of isobutylene with 
chlorotrichloroethylketene (3), produced in situ from 2 (NEt3, 
cyclohexane, 65 0C, 7 h, 67%). The efficient novel isomer-
ization 4 —• 5 was achieved using a catalytic amount of tri-
ethylamine (0.05 molar equiv, toluene, 120 0C, 15 h). The 
4-chlorocyclobutanone 5, isolated in 90% yield, was the ther-
modynamically preferred9 2,4-cis isomer.10 5 readily under
went the Favorskii rearrangement affording either 6'' as an 
80:20 cis-trans mixture (2 molar equiv of NaOH, H20,25 0C, 
4 h, 89%)n or under subsequent HCl elimination (NaOH, 
H2O, 100 0C, 6 h)—with or without the isolation of 6—the 
desired acid 714 in 82% yield with the same stereochemical 
preference (80:20) for the biologically more interesting cis 
isomer. Once formed, 6 and 7 proved to be entirely stable to 
stereoisomerization under alkaline reaction conditions. 

From the synthetic point of view several noteworthy features 
follow: (a) the new chlorotrichloroethylketene 3 gives even 
higher yields of [2 + 2] cycloadducts than one of the most re
active ketene known so far, dichloroketene,15 and it is the 
synthetic equivalent of the considerably less reactive chloro-
2,2-dichlorovinylketene;'9 (b) a large variety of cyclobutanones 
of type 4 can readily be prepared using 1,1 -dialkyl-substituted 
ethylenes RiR2C=CH2 in place of isobutylene; and (c) the 
"cine rearrangement" 20 (e.g., 4 — 5) proved to be a very 
useful synthetic reaction providing an excellent new entry into 
cyclopropanecarboxylic acids of type 7 (2-R1,2-R2 = alkyl 
instead of 2,2-dimethyl) via their precursors of type 5, which 
would not be readily accessible by alternative methods.21 
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butions, which are found starting from either i or iii, indicate a transition 
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Selection of Nonprotonated Carbon Resonances 
in Solid-State Nuclear Magnetic Resonance 

Sir: 

Procedures that simplify NMR spectra are important when 
studying complex molecules, especially when resonance as
signments result from the physical basis of a selection process. 
Among the most useful spectroscopic techniques of high res
olution 13C NMR of liquids is the application of weak modu
lated proton decoupling to selectively broaden those resonances 
from carbons with directly bonded protons;1 additional ma
nipulations2'3 result in a carbon spectrum with narrow lines 
from only the nonprotonated carbons. This communication 
describes a method for obtaining the analogous nonprotonated 
carbon spectrum for solid samples where the signals from 
carbons with attached protons are suppressed. 

In both solids and liquids the much stronger 13C-1H inter
action for carbons with bonded protons is utilized for selection 
of the nonprotonated carbons. However, the heteronuclear spin 
interactions that are effective are different in the two cases: 
with scalar spin-spin coupling operative in liquids and static 
dipole-dipole coupling in both amorphous and polycrystalline 
solids. 

Proton-enhanced NMR4 is combined with magic angle 
sample rotation5 to give natural abundance 13C spectra of 
complex molecules in the solid state. The strongest spin in-

DELAY 

TT/2 MIX ACQUISITION RECYCLE 

'H Si 

13C 

Figure 1. Pulse sequence used to suppress signals from protonated carbons 
in solid samples. 7r/2 represents the initial 90° ' H pulse. The mix period 
consists of a long ' H irradiation that is phase shifted 90° from the initial 
pulse to spin lock the protons and 13C irradiation that is adjusted in 
strength to allow magnetization transfer (see ref 4). The delay interval 
is without any applied radio frequency fields to allow 13C spins to precess 
in their local' H dipolar fields. Proton irradiation is reapplied during the 
acquisition period to give decoupled carbon signals. Proton magnetization 
recovers in the static magnetic field during the recycle delay. 
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